Creativity is an indispensable part of human cognition and also an inherent part of how we make sense of the world. Metaphorical abstraction is fundamental in communicating creative ideas through nuanced relationships between abstract concepts such as feelings. While computer vision benchmarks and approaches predominantly focus on understanding and generating literal interpretations of images, metaphorical comprehension of images remains relatively unexplored. Towards this goal, we introduce MetaCLUE, a set of vision tasks on visual metaphor. We also collect high-quality and rich metaphor annotations (abstract objects, concepts, relationships along with their corresponding object boxes) as there do not exist any datasets that facilitate the evaluation of these tasks. We perform a comprehensive analysis of state-of-the-art models in vision and language based on our annotations, highlighting strengths and weaknesses of current approaches in visual metaphor Classification, Localization, Understanding (retrieval, question answering, captioning) and gEneration (text-to-image synthesis) tasks. We hope this work provides a concrete step towards developing AI systems with human-like creative capabilities.
translated by 谷歌翻译
尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,并且还可以更快地将模型收敛。受最近研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对对应于39个图像类的编码EEG信号对六个受试者的分层数据集的基准精度为70%,这远高于现有工作。与纯净的深度学习方法的准确性稍好相比,我们的图像分类方法具有共同的EEG功能的精度为82%。然而,它证明了该理论的生存能力。
translated by 谷歌翻译
紧固件在确保机械的各个部位方面起着至关重要的作用。紧固件表面的凹痕,裂缝和划痕等变形是由材料特性和生产过程中设备的错误处理引起的。结果,需要质量控制以确保安全可靠的操作。现有的缺陷检查方法依赖于手动检查,该检查消耗了大量时间,金钱和其他资源;同样,由于人为错误,无法保证准确性。自动缺陷检测系统已证明对缺陷分析的手动检查技术有影响。但是,诸如卷积神经网络(CNN)和基于深度学习的方法之类的计算技术是进化方法。通过仔细选择设计参数值,可以实现CNN的全部电势。使用基于Taguchi的实验和分析设计,已经尝试在本研究中开发强大的自动系统。用于训练系统的数据集是为具有两个标记类别的M14尺寸螺母手动创建的:有缺陷且无缺陷。数据集中共有264张图像。所提出的顺序CNN的验证精度为96.3%,在0.001学习率下的验证损失为0.277。
translated by 谷歌翻译
Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield on methods that explain these models' behavior. However, what is the precise goal of providing such explanations, and how can we demonstrate that explanations achieve this goal? Some research argues that explanations should help teach a student (either human or machine) to simulate the model being explained, and that the quality of explanations can be measured by the simulation accuracy of students on unexplained examples. In this work, leveraging meta-learning techniques, we extend this idea to improve the quality of the explanations themselves, specifically by optimizing explanations such that student models more effectively learn to simulate the original model. We train models on three natural language processing and computer vision tasks, and find that students trained with explanations extracted with our framework are able to simulate the teacher significantly more effectively than ones produced with previous methods. Through human annotations and a user study, we further find that these learned explanations more closely align with how humans would explain the required decisions in these tasks. Our code is available at https://github.com/coderpat/learning-scaffold
translated by 谷歌翻译
在尝试“解释”机器学习模型的预测中,研究人员提出了数百种技术,以归因于认为重要的功能的预测。虽然这些归属常常被声称持有改善人类“了解”模型的潜力,但令人惊讶地小的工作明确评估了对这种愿望的进步。在本文中,我们进行了一个众群研究,参与者与欺骗检测模型进行互动,以区分真实和假酒店评论。他们受到模拟新鲜评论模型的挑战,并以降低最初预测的类的概率的目标。成功的操纵将导致对抗性示例。在培训(但不是测试)阶段,突出显示输入跨度以传达Parience。通过我们的评估,我们观察到,对于线性袋式模型,与无解释控制相比,可以在训练期间访问特征系数的参与者能够在测试阶段中更大减少模型置信度。对于基于BERT的分类器,流行的本地解释不会提高它们在无法解释案例上降低模型信心的能力。值得注意的是,当由培训的线性模型的(全局)归属的(全局)归属给出的解释以模仿BERT模型,人们可以有效地操纵模型。
translated by 谷歌翻译
微分方程在现代世界中起着关键作用,包括科学,工程,生态,经济学和金融,这些方程可用于模拟许多物理系统和过程。在本文中,我们使用物理知识的神经网络(PINN)研究了人类系统中药物同化的两个数学模型。在第一个模型中,我们考虑了人类系统中单剂量的单剂量的情况,在第二种情况下,我们考虑定期服用这种药物的过程。我们已经使用隔室图来对这些情况进行建模。使用PINN求解所得的微分方程,在该方程中,我们使用feed向前的多层感知器作为函数近似器,并且对网络参数进行调整以获取最小误差。此外,通过找到有关网络参数的误差函数的梯度来训练网络。我们采用了用于PINNS的Python库DeepXde来求解描述两种药物同化模型的一阶微分方程。结果显示,确切解决方案和预测解之间的高度准确性与第一个模型的结果误差达到10^(-11),而第二个模型的误差为10^(-8)。这验证了PINN在求解任何动态系统中的使用。
translated by 谷歌翻译
虽然许多方法旨在通过突出突出特征来解释预测,但是这些解释服务的目标以及如何评估它们通常不合适。在这项工作中,我们介绍了一个框架,通过在训练教师模型的学生模型上授予学生模型的准确性增益来量化解释的价值。至关重要的是,培训期间学生可以使用解释,但在测试时间不可用。与先前的建议相比,我们的方法不太易于绘制,实现原则,自动,模型 - 无话会的归属。使用我们的框架,我们比较了许多归属方法,用于文本分类和问题应答,并观察不同学生模型架构和学习策略之间的定量差异(在中度到高度)。
translated by 谷歌翻译